月亮棋牌www。a9602。com是一款非常棒的热门棋牌类手游,这里的棋牌玩法有着与众不同的换角色玩法,玩家的角色可以自由的更换,超级多的装扮可以进行随意的选择,打造属于自己的完美人物角色,这里的玩法当中玩家可以体验到多种棋牌的乐趣,还有组合规则模式,难ò
月亮棋牌游戏中心—官网注册

互连器件惯性微系统封装集成技术研究进展

摘要:随着微机电系统(MEMS)的器件圆片级封装技术、垂直互连转接板技术、新键合工艺技术等技术研究的出现,惯性微系统正在朝着三维封装集成架构发展,以满足微电子技术更高集成度、更小体积、更低功耗、更低成本的发展需求。介绍了MEMS惯性器件和MEMS惯性微系统三维集成技术,硅通孔(Through Silicon Via,TSV)三维互连技术和倒装芯片技术为惯性MEMS微系统三维集成一体化提供了设计空间,有效地降低了惯性MEMS三维集成模块的体积、质量,提高了集成度,符合未来惯性MEMS三维集成多功能融合趋势的需求   微小型系统(微纳卫星、微小型飞行器、微小型地面机器人及微小型水下航行器等)及低成本制导武器(批量大、成本低、制导精度较高的各类灵巧弹药、精确制导炸弹和战术导弹)等是未来军事高科技的重要发展方向之一,也是取得未来高技术条件下战争胜利的重要手段。微小型导航、制导与控制系统是新一代微小型系统发展及低成本制导武器的核心技术,也是制约其广泛应用的主要瓶颈之一。硅基MEMS微惯性器件及结合微系统集成制造技术制作的微惯性测量单元(Micro InertialMeasurement Unit,MIMU)具有体积小、成本低、精度较高且便于大批量生产的特点,是微小型导航制导系统的共性核心技术。在精确制导化武器装备及民用领域具备广阔的应用需求,是当前的国际研究热点   近年来,三维集成技术的发展,促进了系统微封装集成技术的发展,其应用领域正由芯片向集成度、复杂度更高的系统级三维集成方向发展。采用三维集成制造技术,令每个功能模块占据一层芯片通过高密度TSV将其集成,可将由不同工艺制造的混合型芯片集成于一个系统中。这个复杂的系统包含了逻辑、存储、光学、电学、射频系统,以及MEMS传感器等多个在封装内集成的模块。MEMS惯性导航系统的发展体现于MEMS惯性器件的全硅化、器件的圆片级真空/气密封装、电路专用化(Application Specific Integrated Circuit,ASIC),初步实现了惯性器件的片上系统(System on Chip,SoC)集成,以及惯导系统级封装(System in Package,SiP)集成   在未来,MEMS集成惯导系统在微纳卫星、月球车、火星车、运载火箭及小型战术武器中的应用,对MEMS惯导系统的集成度、功耗、体积、抗辐照性能及可批量制造性等提出了更高的要求,MEMS封装技术正在从2.5D向3D方向发展   据美国国防部高级研究计划局(Defense Advanced Research Projects Agency,DARPA)分析,工作时间超过10s的武器平台的导航制导目前均得到了全球定位系统(Global Positioning System,GPS)的辅助,甚至还包括工作时间为1h~24h的单兵个人导航系统。在实际使用过程中,GPS极可能被严重干扰或完全阻塞,而使得由GPS辅助的导航系统无法完成工作任务。这些现状,均要求在未来的武器平台中,使用一种全自主的、不依赖任何外部辅助手段的高集成度微型惯性导航/制导系统。根据这些分析,DARPA已经启动了一系列高集成度导航制导微系统研究计划,而微惯性导航系统的集成制造技术是其中极为重要的研究方向。其中的关键,在于如何利用先进的集成制造技术,实现惯性器件与集成电路(Integrated Circuits,ICs)等的小体积、低成本、大批量生产。此外,惯性器件的正交集成已成为了MEMS封装集成发展的瓶颈   MEMS惯性器件必须与集成电路结合才能有效工作,集成电路用于实现MEMS传感器与外界之间的通信,起到信号调节功能,例如模数转换、放大滤波和信息处理电路等   MEMS和IC组件的集成和封装可通过多种可能的方法实现,对其的技术选择很大程度上取决于设备、应用领域和商业要求。基于制造技术的发展,为满足移动电子设备和高端芯片的需求,存储、CPU及MEMS等器件模块正在朝着三维架构方向发展,成为了“超越摩尔”技术的重要技术领域,如图1所示   MEMS惯性器件与IC组件的封装集成,实现了从多芯片模组(Muli-chip Modules,MCM)到SiP技术、SoC技术再到圆片级芯片封装(Wafer Level Chip Scale Package,WLCSP)技术、三维堆叠集成技术的发展,实现了从独立设计、制造和测试的板级集成,向基于晶圆级单片的系统级芯片解决方案集成技术,以及三维异构集成技术的发展,如图2所示   就国际上己经公开的惯性MEMS三维集成技术而言,其大致可被划分为3种,如图3所示   2)在制造过程中,惯性MEMS圆片与MEMS专用集成电路IC圆片两者键合,实现芯片层叠与电气连接。通常采用一种横向电极引出的封装集成技术方案,直接使用ASIC中的金属引线作为跨越封装内外的电学引出导线)基于TSV技术的惯性MEMS三维集成(如WLCSP技术)成为了MEMS微系统尺寸减小、集成度提高的有效技术手段,使得MEMS微系统的3D硅通孔互联技术取得了产品化的突破。以上3种三维集成方式,实现了惯性MEMS芯片到芯片(Chip to Chip,C2C)、芯片到晶圆(Chip to Wafer,C2W)及晶圆到晶圆(Wafer to Wafer,W2W)的堆叠集成,实现了惯性器件的商业/军事应用。图3 惯性MEMS三维集成技术   它的核心是按武器装备功能发展的需求,将多种先进元器件通过异构集成技术,以三维集成的结构形式大幅度降低导航系统的体积、功耗,使其易于批量化制造,尤其可满足新型战术武器的需求   独立的传感器采用绝缘衬底上的硅晶圆(Silicon on Insulator,SOI)工艺技术制备,6轴惯性仪表分布于立方体的六面,通过柔性连接板实现单片集成,同时形成了用于固定折叠结构的闩锁结构,得到了3维IMU微系统,其体积小于1cm3   经测试,前者的传感器轴变动在4mrad之内,后者改进到了0.2mrad之内。该方案实现了6轴IMU的单片集成,但该集成方案限制了MEMS的仪表加工制备工艺,同时多传感器单片集成的成品率也较低。图5 集成可折叠六轴IMU示意图   TSV硅转接板是指含有TSV互连的硅圆片,其上下表面制作了重新布线层,利用微凸点在TSV转接板上组装惯性MEMS芯片及MEMS专用IC芯片   基于TSV转接板的惯性MEMS三维集成技术可以发挥TSV转接板在热膨胀系数失配、线宽匹配等方面的优势,释放了传统惯性MEMS三维集成技术对MEMS专用IC在可选工艺制程方面的束缚,为惯性MEMS芯片的低应力组装提供了设计空间,允许其集成更多功能芯片,具有开放性的特点、优点,如图7所示。目前,制造技术已经能够满足一般的应用要求,但是相比与三维集成制造相关的三维集成设计方法、器件可靠性、散热、多功能材料和器件集成等方面的需求,仍存在一定的差距   同时,由于铜TSV互连与周围硅衬底的热膨胀系数失配,铜TSV的互连直径通常被控制为小于或等于20μm,TSV互连的深宽比大于或等于10,这对目前的TSV技术是个较大的挑战   Silex公司在2008年推出了标准硅通孔工艺,其通孔采用绝缘填埋技术,用重掺杂低阻硅作为电极导体,导通电阻在1D量级,如图8(a)所示。随后,该公司提出了一种基于玻璃熔融回流的硅通孔技术,如图8(b)所示   经过后续的硅减薄、玻璃减薄、化学机械抛光(Chemical and Mechanical Polishing,CMP)等工艺流程的处理,最终形成硅转接板。该技术有效地增加了绝缘介质层的厚度,有效减少了各引脚之间的寄生电容。但是,该工艺复杂,技术难度大,玻璃回填深宽比有限。以上2种技术方案均采用了硅互连通孔(Silicon Via,Sil-via)实现垂直互连。2012年,借助该技术Silex公司实现了2.5D硅转接板的研制,其中BGA植球用TSV的孔径为50μm,间隔为150μm。同样使用低阻硅实现垂直互连的转接板方案有穿玻璃通孔(Through Glass Via,TGV)技术,如图8(c)所示。该技术同样采用玻璃熔融工艺,其特点是在玻璃晶圆内与刻蚀有硅柱的硅晶圆键合,将其高温加热至玻璃熔融,使得硅柱填埋入玻璃晶圆内。该工艺难度相对较小,转接板厚度可达200μm及以上。但是,采用该技术制备的转接板的基底材料为玻璃,无法解决硅-玻璃之间热膨胀系数差异的问题。Schott Hermes采用该技术实现了MEMS-ICs的WLCSP集成。为满足不同器件的集成需求,瑞典ACC Microtec公司和Silex公司开发了金属通孔(Metal Via,Met-Via)技术,如图8(d)所示。其特点在于与常规TSV相比,该技术可以在厚度为300μm~800μm的硅片上制作转接板,转接板刚度大,尤其适合对应力敏感的MEMS传感器的三维集成   倒装芯片的互连方式主要包括了热超声、回流焊和热压3种键合工艺,分別对应金球凸点、锡球凸点和铜柱凸点3种凸点制作工艺   倒装芯片通常无塑封,芯片背面可被有效冷却,提高了其散热能力,更适合多I/O数的芯片使用。改进的散热能力促进了倒转芯片技术的应用,以实现高密度和低成本的封装集成。圆片级倒装焊料的凸点可分为C4(Controlled-collapse Chip Connection)和C2(Chip Connection)2种,如图9所示。基于C4的倒装技术的应用已超过了50年,表面张力的作用使得C4在回流过程中可实现自对准   因此,在应用C4技术时,凸点间距一般不得小于50μm。C2则更适合于更精细的间距的芯片键合。由于铜的高导热性和低电阻率,C2较C4的电、热性能均更好。C2倒装键合般包括回流焊和热压键合2种方式   基于倒装芯片技术,台积电公司(TSMC)提出了芯片-晶圆-基底(Chip on Wafer on Substrate,CoWoS)集成工艺,并与Xilinx公司合作实现了FPGA的芯片集成。集成基底为厚度100μm的硅转接板,TSV的通孔直径10μm,有4层再布线μm,集成现场可编程门阵列(Field Programmable Gate Array,FPGA)单芯片凸点数超过了5000个微凸点间距仅为45μm,如图10所示   从国内外领先的MEMS及微系统集成研究成果可以发现,集成工艺设计对MEMS器件的整体性能至关重要,MEMS三维集成技术研究是该领域研究中的一个重要环节,对于提升MEMS微系统研究水平、推动MEMS应用、完善惯性MEMS器件产业链的发展具有重要意义   综合考虑基于TSV的惯性MEMS三维集成技术的特点与发展趋势,以及国内惯性MEMS器件及TSV互连技术研究布局与特点,基于TSV转接板的惯性MEMS三维集成技术将是国内开展惯性MEMS维集成研究的优选切入点   推荐培训:《运动(惯性)传感器核心技术培训课程》将于11月15日~17日在无锡举行,本课程邀请MEMS领域优秀讲师和产业专家,重点讲解运动(惯性)传感器核心技术,包括:(1)运动传感器产业及应用综述;(2)MEMS惯性传感器技术及产业分析;(3)MEMS惯性传感器设计技术详解;(4)高精度MEMS加速度计技术详解;(5)工业级MEMS加速度计及应用:振动传感器   (7)MEMS惯性传感器系统特性分析;(8)运动传感器ASIC技术详解;(9)高精度单芯片多轴MEMS惯性传感器技术详解。如果您有兴趣,请联系   声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务 月亮棋牌 月亮棋牌app 月亮棋牌手机版官网 月亮棋牌游戏大厅 月亮棋牌官方下载 月亮棋牌安卓免费下载 月亮棋牌手机版 月亮棋牌大全下载安装 月亮棋牌手机免费下载 月亮棋牌官网免费下载 手机版月亮棋牌 月亮棋牌安卓版下载安装 月亮棋牌官方正版下载 月亮棋牌app官网下载 月亮棋牌安卓版 月亮棋牌app最新版 月亮棋牌旧版本 月亮棋牌官网ios 月亮棋牌我下载过的 月亮棋牌官方最新 月亮棋牌安卓 月亮棋牌每个版本 月亮棋牌下载app 月亮棋牌手游官网下载 老版月亮棋牌下载app 月亮棋牌真人下载 月亮棋牌软件大全 月亮棋牌ios下载 月亮棋牌ios苹果版 月亮棋牌官网下载 月亮棋牌下载老版本 最新版月亮棋牌 月亮棋牌二维码 老版月亮棋牌 月亮棋牌推荐 月亮棋牌苹果版官方下载 月亮棋牌苹果手机版下载安装 月亮棋牌手机版 月亮棋牌怎么下载

相关推荐:



相关产品推荐

关注官方微信

月亮棋牌游戏中心—官网注册
Copyright © 月亮电子元件有限公司 版权所有 Power by DeDe58网站Sitemap|导航地图